Energy Levels and g Factors of Cu²⁺-Doped Bis(L-asparaginato)zinc(II)

Ling Zhang, Maolu Du, and Ke Zhan

Department of Physics, Southwest University for Nationalities, Chengdu 610041, P. R. China

Reprint requests to M. D.; E-mail: Duml@mail.sc.cninfo.net

Z. Naturforsch. 63a, 616-618 (2008); received March 17, 2008

The formulas for the energy levels and g factors for $3d^9$ ions in an orthorhombic field with D_{2h} symmetry are obtained. They are used to investigate the energy levels and the g-anisotropy of Cu^{2+} ions in a bis(L-asparaginato)zinc(II) single crystal. The theoretically calculated values of the energy levels have agree well with the observed optical spectrum of the Cu^{2+} ions in the compound considered here, and also the calculated values of the g-anisotropy conform with the experimental values.

Key words: Bis(L-asparaginato)zinc(II) Crystal; Energy Levels; g-Anisotropy; D_{2h} Distortion. *PACS numbers:* 71.70CH; 76.30F; 78.50; 78.40

1. Introduction

The amino acid L-asparagine is known to an essential growth factor for a variety of tumours, in particular animal lymphomas [1]. Recently it has been shown that the activity of L-asparagine can be inhibited by a number of metal ions [2]. A L-asparagine acid easily forms easily additive compounds with a number of metals and inorganic salts. When a paramagnetic ion is placed in a crystalline surrounding in the presence of an external magnetic field, its behaviour will change from its free ion behaviour.

In [3] Kripal and Singh have presented an optical study on the single crystal of bis(L-asparaginato)zinc(II) with Cu²⁺ impurity at room temperature. They have given both observed and calculated optical absorption spectra in the wavelength range 195–1100 nm. But though their calculated values are near to the experimental values, they did not conform with the theory of energy level splitting. As for the *g*-anisotropy in [3], the calculated value δ_g ($\delta_g = g_y - g_x$) is negative, while the experimental value δ_g is positive. To confirm the optical absorption spectra of Cu²⁺-doped bis(L-asparaginato)zinc(II), the calculated *g*-anisotropy and δ_g values are necessary.

2. Crystal Structure

The bis(L-asparaginato)zinc(II) crystal is monoclinic with space group P21 and unit cell dimensions a=12.323 Å, b=5.027 Å, c=9.702(2) Å, and Z=2 [4]. The zinc atom is in a distorted octahedral environment. A carboxylic O atom and the α -

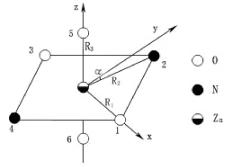


Fig. 1. Structure of the bis(L-asparaginato)zinc(II) crystal.

amino N atom from each ligand coordinate to the Zn atom in a trans square planar configuration. The octahedral environment is completed by the carbonyl O atoms from neighbouring molecules, creating infinite chains linked in the [011] direction. So the crystal field around the centre Zn^{2+} ion is D_{2h} indeed. The D_{2h} structure is shown in Figure 1. The angle between the *y*-axis and N atom is denoted as α . In the bis(L-asparaginato)zinc(II) crystal, the structure has been determined with $R_1 = 2.094$ Å, $R_2 = 2.0815$ Å, $R_3 = 2.3795$ Å, $\alpha = (8.85 \pm 0.02)^{\circ}$ [4].

3. The Energy Levels and *g* Factors of the Bis(L-asparaginato)zinc(II) Crystal

3.1. Formulas for the Energy Levels of a $3d^9$ System in the D_{2h} Symmetry

The Cu²⁺ ion belongs to the electron system 3d⁹ [5]. Its energy level in a cubic field will split into ²E and

0932-0784 / 08 / 0900-0616 \$ 06.00 © 2008 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

²T₂. The ground state in octahedral symmetry is ²E. In an orthorhombic field with D_{2h} symmetry the energy level will split further. ²T splits into ²B₁(ξ), ²B₂(η), and ²B₃(ξ); ²E splits into ²A₁(ε) and ²A₁(θ). ²A₁, ²B₁, ²B₂, and ²B₃ are the irreducible representations in D_{2h} symmetry. ε and θ are the two components of ²E; ζ , η and ξ are the components of ²T₂.

Using the crystal field theory, the crystal-field potential in D_{2h} symmetry can be described by the following expression:

$$V(D_{2h}) = \sum_{i} \left[B_{20}(r_{i}) C_{0}^{2}(\theta_{i}\varphi_{i}) + B_{22}(r_{i}) C_{2}^{2}(\theta_{i}\varphi_{i}) + B_{40}(r_{i}) C_{0}^{4}(\theta_{i}\varphi_{i}) + B_{42}(r_{i}) C_{2}^{4}(\theta_{i}\varphi_{i}) + B_{44}(r_{i}) C_{4}^{4}(\theta_{i}\varphi_{i}) + B_{2-2}(r_{i}) C_{-2}^{2}(\theta_{i}\varphi_{i}) + B_{4-2}(r_{i}) C_{-2}^{4}(\theta_{i}\varphi_{i}) + B_{4-4}(r_{i}) C_{-4}^{4}(\theta_{i}\varphi_{i}) \right],$$

$$(1)$$

where $B_{22}(r_i) = B_{2-2}(r_i)$, $B_{44}(r_i) = B_{4-4}(r_i)$, $B_{42}(r_i) = B_{4-2}(r_i)$, $A_q^k = B_{kq}/\gamma^k$. From this, we can calculate the energy matrix

$$\langle \Gamma_{\gamma} | V(D_{2h}) | \Gamma_{\gamma}' \rangle,$$
 (2)

where $|\Gamma_{\gamma}'\rangle$ and $|\Gamma_{\gamma}\rangle$ are $|\zeta\rangle, |\eta\rangle, |\xi\rangle, |\varepsilon\rangle, |\theta\rangle$.

Then we obtain the energy formulas as follows:

$$E(\zeta) = -\frac{2}{7}B_{20} + \frac{1}{21}B_{40} - \frac{1}{3}\sqrt{\frac{10}{7}}B_{44},$$
 (3a)

$$E(\eta) = \frac{1}{7}B_{20} + \frac{\sqrt{6}}{7}B_{22} - \frac{4}{21}B_{40} + \frac{2\sqrt{10}}{21}B_{42}, (3b)$$

$$E(\xi) = \frac{1}{7}B_{20} + \frac{\sqrt{6}}{7}B_{22} - \frac{4}{21}B_{40} - \frac{2\sqrt{10}}{21}B_{42},$$
 (3c)

$$E(a) =$$

$$\begin{bmatrix} -\frac{2}{7}B_{20} + \frac{1}{21}B_{40} + \frac{1}{3}\sqrt{\frac{10}{7}}B_{44} & -\frac{2\sqrt{2}}{7}B_{22} + \frac{\sqrt{30}}{21}B_{42} \\ -\frac{2\sqrt{2}}{7}B_{22} + \frac{\sqrt{30}}{21}B_{42} & \frac{2}{7}B_{20} + \frac{2}{7}B_{40} \end{bmatrix}.$$
(3d)

Here B_{kq} is the crystal-field parameter, which is related to the crystal-structure parameter. In a point-charge model it can be defined as

$$B_{kq} = A_q^k \langle r^k \rangle, \tag{4}$$

$$A_q^k = \sum_{m} \frac{eq_m}{R_{m+1}^{k+1}} (-1)^{q+1} C_{-q}^k (\Theta_m, \Phi_m).$$
 (5)

In D_{2h} symmetry the non-zero crystal-field parameters are B_{44} , B_{42} , B_{40} , B_{22} , and B_{20} , which are related to the band lengths R_1 and R_2 , and the angle α , and the

charges of the ligands q_1 and q_2 . They can be obtained from the following expressions:

$$B_{44} = B_{4-4} = \sqrt{\frac{35}{32}} \left(\frac{q_1}{R_1^5} + \frac{q_2}{R_2^5} \cos 4\alpha \right) e \langle r^4 \rangle,$$
 (6a)

$$B_{42} = B_{4-2} = \sqrt{\frac{5}{8}} \left(\frac{q_1}{R_1^5} - \frac{q_2}{R_2^5} \cos 2\alpha \right) e \langle r^4 \rangle,$$
 (6b)

$$B_{40} = -\frac{1}{4} \left(\frac{3q_1}{R_1^5} + \frac{3q_2}{R_2^5} + \frac{8q_1}{R_3^5} \right) e\langle r^4 \rangle, \tag{6c}$$

$$B_{22} = B_{2-2} = -\sqrt{\frac{3}{2}} \left(\frac{q_1}{R_1^3} - \frac{q_2}{R_2^3} \cos 2\alpha \right) e \langle r^2 \rangle,$$
 (6d)

$$B_{20} = \left(\frac{q_1}{R_1^3} + \frac{q_2}{R_2^3} - \frac{2q_1}{R_3^3}\right) e\langle r^2 \rangle,\tag{6e}$$

where q_1 is the charge of the O ligand, q_2 is the charge of the N ligand, and e is the electron charge; $\langle r^2 \rangle$ and $\langle r^4 \rangle$ are the expectation values for the respective powers of the distances of the Cu²⁺ ion in the crystal.

3.2. Formulas for the g Factors of a $3d^9$ System in the D_{2h} Symmetry

In an orthorhombic field the spin Hamilton of a 3d⁹ ion can be described by

$$H_s = g_x \mu_B H_x \hat{S}_x + g_y \mu_B H_y \hat{S}_y + g_z \mu_B H_z \hat{S}_z,$$
 (7)

where g_i (i = x, y, z) indicates the components of the g factor; μ_B is the Bohr magneton, \hat{S}_i (i = x, y, z) is the spin operator, and H_i (i = x, y, z) indicates the components of the magnet field along the x-, y-, and z-axes.

Using the perturbation theory, the g factors can be obtained by the formula

$$g_i = g_s - 2\lambda \Lambda_{ii}, \tag{8}$$

$$\Lambda_{ij} = \sum_{n \neq 0} \frac{\langle 0|\hat{L}_i|n\rangle \langle n|\hat{L}_j|0\rangle}{E_n^{(0)} - E_0^{(0)}} \quad (i, j = x, y, z). \quad (9)$$

Here $g_s = 2.0023$ is the value of the free electron and λ is the spin-orbit coupling coefficient for the $3d^9$ ion. For a Cu^{2+} ion the relation between λ and the one-electron spin-orbit coupling coefficient ζ_d is $\lambda = -\zeta_d$. Using (2) and introducing the average covalent factor N [6] to describe the covalency, the g factors expressions of a $3d^9$ ion in D_{2h} symmetry can be obtained as

$$g_z = g_s - \frac{8\zeta_d N^4}{E(\zeta) - E(\varepsilon)},\tag{10a}$$

Table 1. Comparison of the theoretical calculations of the energy levels in this work and experimental results.

Transition	Band positions (cm ⁻¹)			
	Calculated	Experimental [3]		
$^{2}A_{1}(\varepsilon) \rightarrow ^{2}A_{1}(\theta)$	10938	11299	12180	
$^{2}A_{1}(\varepsilon) \rightarrow {}^{2}B_{1}(\zeta)$	14288	14727	15576	
$^{2}A_{1}(\varepsilon) \rightarrow {}^{2}B_{2}(\eta)$	19184	19193	19920	20790
$^2A_1(\varepsilon) \rightarrow ^2B_3(\xi)$	37397	32786	37878	42372

$$g_x = g_s - \frac{2\zeta_d N^4}{E(\xi) - E(\varepsilon)},$$
(10b)

$$g_{y} = g_{s} - \frac{2\zeta_{d}N^{4}}{E(\eta) - E(\varepsilon)}.$$
 (10c)

3.3. Results for Energy Levels and g Factors

According to (3), (6), and (10) the values of $E(\zeta)$, $E(\eta)$, $E(\xi)$, $E(\alpha)$, g_x , g_y , g_z , and δ_g are related to the crystal structure data R_1 , R_2 , and α . Also $q_1=2e$ for the O^{2-} ion and $q_2=1e$ for the N^{1-} ion. In error scope, taking $\alpha=8.83^\circ$, we can calculate the energy levels and g factors. An attempt has also been made to obtain $\delta_g=g_y-g_x$. The results for the energy levels are shown in Table 1; the three principal g and δ_g values are shown in Table 2. They both can be compared with the experimental values.

4. Discussion and Conclusion

The Cu^{2+} ion belongs to the electron system $3d^9$. In an orthorhombic field its energy level will split into ${}^2A_1(\epsilon)$ and ${}^2A_1(\theta)$, which come from 2E , and into ${}^2B_1(\zeta)$, ${}^2B_2(\eta)$, ${}^2B_3(\xi)$, which come from 2T_2 . It is known that 2E is the ground state in octahedral symmetry, which means that the 2E components ${}^2A_1(\epsilon)$ and ${}^2A_1(\theta)$ should be in general lower than

- R. Tapramaz, B. Karabulut, and F. Koksal, J. Phys. Chem. Solids 61, 1367 (2000).
- [2] K. V. Narasimhulu, C. S. Sunandana, and J. Lakshmana Rao, Phys. Status Solidi (a) 217, 991 (2000).
- [3] R. Kripal and D. K. Singh, J. Phys. Chem. Solids 67, 2559 (2006).

Table 2. Comparison of the theoretical calculations of the g factors in this work and experimental results.

g-Anisotropy	Principal g values		
	Calculated	Experimental [3]	
g _x	2.040	2.034	
g_{y}	2.101	2.064	
•	2.296	2.239	
$oldsymbol{\mathcal{S}_{g}}^{z}$	0.061	0.031	

the 2T_2 components $^2B_1(\zeta),\ ^2B_2(\eta),\$ and $^2B_3(\xi).$ But in [3], its calculated result $^2A_1(\theta)$ is higher than $^2B_1(\zeta),\ ^2B_2(\eta),\$ and $^2B_3(\xi);\$ it therefore did not conform with theory and seemed unreasonable. According to our calculation, the energy levels of the Cu^{2+} ion in the bis(L-asparaginato)zinc(II) single crystal are as follows: $^2A_1(\epsilon) \to ^2A_1(\theta),\ 10938\ cm^{-1};\ ^2A_1(\epsilon) \to ^2B_1(\zeta),\ 14288\ cm^{-1};\ ^2A_1(\epsilon) \to ^2B_2(\eta),\ 19184\ cm^{-1};\ ^2A_1(\epsilon) \to ^2B_3(\xi),\ 37397\ cm^{-1}.$ Note that the 2E components $^2A_1(\epsilon)$ and $^2A_1(\theta)$ are both lower than the 2T_2 components $^2B_1(\zeta),\ ^2B_2(\eta),\$ and $^2B_3(\xi).$ So these theoretical values of the present work not only rather well agree with the experimental result in [3] but also more reasonably and satisfactorily explain the optical absorption spectrum of Cu^{2+} in a bis(L-asparaginato)zinc(II) crystal of [3].

In [3] the experimental value δ_g is positive $(g_y > g_x)$, but the previously calculated value is $\delta_g = -0.007$ $(g_x > g_y)$, which obviously does not conform with the structure. In this paper the calculated δ_g value is not only positive but also matches with the experimental value; so our results can explain the structure of the bis(L-asparaginato)zinc(II) crystal more reasonably and satisfactorily.

Acknowledgement

This project was supported by the National Natural Science Foundation of China (Grant No. 50372053).

- [4] F. S. Stephens, R. S. Vagg, and P. A. Williams, Acta Cryst. B 33, 433 (1977).
- [5] Y. Huang, M. L. Du, C. Ni, and J. F. Wen, Z. Naturforsch. 60a, 193 (2005).
- [6] M. G. Zhao, J. A. Xu, G. R. Bai, and H. S. Xie, Phys. Rev. B 27, 1516 (1983).